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Biological Overview  ontd)

* The Coral Reef Ecosystem is a diverse collection of
species that interact with each other and the physical
environment. It is the essential feeding and breeding
ground for numerous organisms.

« The Sun iIs the initial source of energy for this
ecosystem.
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Biological Overview

Turf algae are multispecific assemblage of microalgae that
attain a canopy height of only 1-10 mm.

Macroalgae are larger (canopy height usually >10mm) erect
algae often with anatomically complex forms.

Corals settle on turf algae. Macroalgae spread vegetatively over
turf algae.

High macroalgal biomass can interfere with coral recruitment
and reduce coral survival.




« Coral polyps do not photosynthesize, but have
a symbiotic relationship with single-celled organisms
called Zooxanthellae living inside coral polyp tissues.

* Through photosynthesis, Zooxanthellae produces O, and

carbohydrates for coral polyps. In return, coral polyps produces
CO, and ammonia for Zooxanthella.




Coral Bleaching: It is the result of disruption of
symbiosis between Zooxanthella and coral hosts.

¢ Toxin released by macrocalgae increases the mortality rate of corals. During
HAB, large areas of corals becomes depleted.

¢ In absence of herbivorous Parrotfish, there is a rapid increase of growth of sea
weeds.

¢ Coral polyps are smothered to death by this rapid growth of algal mats, resulting
to coral bleaching.

Bhattacharyya and Pal: Nonlinear Analysis: Real World Applications,12, 965-978, (2011)



Phase shifts in coral-reefs

« Coral reefs can undergo relatively rapid changes in the
dominant biota, a phenomenon referred to as phase shift.

« Degradation of coral reefs Is often associated with changes
In community structure towards macro-algal dominated
reef ecosystem due to the reduction in herbivore caused by
overfishing.

 We Investigate coral-macroalgal phase shift due to the
effects of harvesting of herbivorous reef-fish by means of a
continuous time model in a food chain.

Bhattacharyya and Pal: JBP,39, 37-65 (2013)
Bhattacharyya and Pal: CMWA, 66(3), 339-355, 2013.


http://www.sciencedirect.com/science/journal/08981221/66/3
http://www.sciencedirect.com/science/journal/08981221/66/3
http://www.sciencedirect.com/science/journal/08981221/66/3

* In ecology, ecosystems can exist under multiple alternative steady

states. Under external perturbations, these ecosystems may exhibit
phase shifts.

* Due to ecological feedbacks, ecosystems display resistance to phase
shifts and therefore tend to remain in one state unless perturbations
are large enough. Multiple states may persist under equal

environmental conditions, a phenomenon known as hysteresis.

Bhattacharyya and Pal, JBP (2015)

Bhattacharyya and Pal, Ecological Complexity (2015)
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Basic Assumptions  (contd. )

Macroalgae spread vegetatively over algal turfs at a rate' a. ;
Colonization rate of newly immigrated macroalgae on algal turf |$ b )
Corals recruit to and overgrow algal turfs at a ratQ . ;

Corals are overgrown by macroalgae at a raté a. )

Death of macroalgae and corals is adding to the growth of turf algae.

The loss of macroalgal cover and subsequent recolonization of algal turfs
due to grazing.
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Simplification of the model

Since d—“;(ﬂ[ +C +T) =0, it follows that M (t) + C(t) + T'(t) = cg, for all t > 0, where ¢y = M(0) +

C(0) + T(0).

Without any loss of generality we assume that ¢, = 1. Then the system reduces to

% SRR OB VT SR SRS = )

where M (0) > 0 and C(0) > 0.




Equilibria

The system (2) possesses the following equilibria:

—————————————

(i) Coral-free equilibrium iEq = (MQ,_O)_., where My = == b—d1—g(1-B)++/ {;;b—dl——g(lﬂﬁ)}%zlab;

M {aC eSS d1}+(aM+b)(1—M—0) —0andr(1—M—C) = (a+7)M+d; = 0
in the interior of the first quadrant. C* is given by the equation a;C?+ayC?+a3C+as = 0
and M* = p + qC*, where

ar = g{a(l +¢) —a}, a0 = g(a+ d1) — ap — ag(1 —p) + (1 + ¢)(b+ ap — ag),

as = pla+di) —q{d1 + 9(1 = 8)} + (1 — p)(ag —ap — b) — (1 + q)(ap + b),

ag = (ap+0)(1 —p) —p{di + 9(1 - B)},p = ;5% and ¢ = =



Stability Analysis

At E, the eigenvalues of the Jacobian matrix of the system (2) are —v/{a — b — d; — g(1 — 8)}2 + 4ab
and r — My(r + o + ) — da. Therefore, all the eigenvalues of the Jacobian matrix are

negative if r — My(r + a + ) — dy < 0. This gives the following lemma:

Lemma 3.1. The system (2) is locally asymptotically stable at Ey if v > ., where

__ r—da—My(r+a)
e e

Therefore, with high macroalgal toxicity, corals are eliminated from the system.

1

Lemma 3.2. Ifr > i%'—f—- and (r + a + ”/)fé‘m* e TfjﬂE*, the system (2) is locally
asymptotically stable at E*.
Therefore, with high coral-encroachment on algal turfs, the interior equilibrium becomes

locally asymptotically stable.




Non-existence of periodic solutions

We consider the Dulac function (Hsu & Huang, 1995) B(M,C) = where M,C > 0.

MC’

M*Z

Then at (M*,C*), we have V.(Bf!, Bf?) = —= {a + I+ b(l_c*)} < 0.

Since this divergence has constant sign throughout the first quadrant, by Dulac’s criterion
(Strogatz, 1994) we get the following lemma:

Lemma 3.3. The system (2) has no closed orbit contained in the first quadrant.

Since there is no periodic solution for the system (2) in the first quadrant, by Poincare-
Bendixon theorem, it follows that every trajectory of the system (2) approaches asymp-

totically to an equilibrium point of the system (2).



Transcritical bifurcation at E |,

Lemma 3.4. The system (2) undergoes a transcritical bifurcation at Eq when ~y crosses

Y+

Proof: At v = ~,, we have

—v{a—b—di—g(1 - B)}>+4ab Mo{a—a—g(1—pF)} b

0 0

Jo =

Therefore, the zero eigenvalue of the Jacobian matrix is simple.
Let V and W be the eigenvectors corresponding to the zero eigenvalue for Jy and JI

respectively.

{a—b—d1—g(1—p)}?+4ab
Mo{a—a—g(1 )} —b
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Transcritical bifurcationat £, ...

Let us express the system (2) in the form X = f(M, C), where
i T

X—(M C’) andf(M,C;fy)—(fl f2)

Then W7 £, (M, 0;7.) = 0.

Thus, no saddle-node bifurcation occurs at Ey when + crosses 7.

Also, D?f(My,0;v.)(V, V) = [% T (82 aﬁa%%) 5 agfgcﬁ%%%)) HUE 32]'(;2?;’7*),01@1 (M,C)=(Mo,0)
b = 01

= —2vi(r+a+ v +rv) #0.

Therefore, the system (2) undergoes a transcritical bifurcation at Ey when 7 crosses 7.



Saddle-node bifurcation at E*

1
fM|E*

Lemma 3.5. Ifr > 57~ and v* # n, the system (2) undergoes a saddle-node bifurcation

1
T’f}yﬂg* 20,7‘3(1—0*)3

9(1-p){r(1-C*)+d2}-2r2(a—a)(1-C*)®

at E* when ~y crosses v*, where v* = —r—a andn =
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Proof: If r > f”é,'f* and v = v*, then Tr(E*) # 0 and Det(J*) = 0 and so, the zero

eigenvalue of the Jacobian matrix is simple.

fME* fcl,‘|E*
At v = v* we have J* =
rCriA )
—— —rC
fC|E’*

Let V* and W* be the eigenvectors corresponding to the zero eigenvalue for J* and J**

respectively.

T T
Then we obtain V* = ( e toa ) aneRpyiE= ( i Vellon ) :
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Saddle-node bifurcation at E*__,

M1y e

We obtain, W' f., (M*, C*;v*) = == # 0.

AISO, Dgf(J\/[*,C*.’}/*)(V, V) — %Oy e 2(r+a+v*)(a—a) == 9(1-B)(r+at+y*){r(1-C*)+da} 75 0 if

r r3(1—-C*)3

* e 2ar3(1—C*)3
7" 7 M, where 1 = srgra—c - aaa—op T~ &

1
fM|E*

Therefore, if r > =5 and v* # 7, the system (2) undergoes a saddle-node bifurcation

at £* when 7 crosses v*.

Hysteresis

Assume that the conditions of Lemma 3.4 and 3.5 are satisfied. If v, < v*

holds, a sharp transition with hysteresis occurs.



Numerical Simulations

Table 1: Parameter values used in the numerical analysis.

Parameters Description of Parameters Value | Reference
«@ Growth rate of Chlorodesmis fastigiata over Acropora nasuta 0.1 [2]
i Recruitment rate of Acropora nasuta on turf algae 0.55 [2]
a Growth rate of Chlorodesmis fastigiata over algal turfs 0.77 (2]
b Colonization rate of newly immigrated Chlorodesmis fastigiata on algal turf | 0.05 (2]
dq Natural mortality rate of Chlorodesmis fastigiata 0.1 [1]
da Natural mortality rate of Acropora nasuta 0.24 [2]
7y Toxin-induced death rate of Acropora nasuta 0.1 -
g Maximal grazing rate of Gobidon histrio 0.4 [2]
B Parameter representing harvest-mediated grazing loss 0.05 -




Transcritical bifurcation at y,
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(a) At y,, Det(Jy)= 0 and Tr(J,) < 0 with instability at E, for y <y, and
stability at Eo wheny > v,.




Saddle-node bifurcation at y*

. |
E' doea not exist
|
0.45 0.5
|
I
-0.66 : m —
I
07 I 7
5 | .
= | E  does not exlst
£0.75 I g
I
I
£.9 | —
I
s | | | | | 3%95 n |
0 0.05 0.1 0.15 02 025 0.3 035 0. (r} 0.45 0.5
¥
*

/4

(b)At y*,Det(J*)= 0 and Tr(J*) < 0 with stability at E* for y < y* and
non — existence of E* wheny > y~.




Bifurcation diagram of y vs. the equilibrium value of coral cover.
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Monostable at E,
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Saddle — node bifurcation at g,
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(a) At g,,Det(J*) = 0 and Tr(J*) < 0 with stability at E* for
g > g, = 0.32102 and non — existence of E*when g < g,.




Transcritical bifurcation at g*
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(b) At g*,Det(J)= 0 and Tr(J,) < 0 with instability at E, for
g > g = 0.4445 and stability at Eo when g < g~.




Bifurcation diagram of g vs. the equilibrium value of coral cover.
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Basin of attraction for E, and E*
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Bifurcation diagram of 8 vs. the equilibrium value of coral cover.
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Saddle-node bifurcation at 8*
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Basin of attraction for E, and E*
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(@)The basin of attraction for E*(blue) and E, (red) with § = 0 (no
harvesting).

(b)The basin of attraction for E* (blue) and E, (red) with g = 0.2.



System with delay

We analyze the dynamics of coral reefs by assuming that the recovery of algal turf after
being grazed by herbivores is not instantaneous but will be mediated by some discrete
time lag 7. Further, we assume that macroalgae liberate toxic substances at a time lag
T,, required for its maturity.

R WO L (0 — )+ T(aM ) e PG

dt Mt—n)+TE—71)

% — O{TT—QN[—’YM(t—TQ) —dz} (3)
T g1-AME—m)

o M(t_Tl)_I_T(t_Tl)+dlM+O{d2+7M(t—Tg)}—T(aﬂ/f+'r0+b)

Since M + C + T = 1, system (3) reduces to:

M g(1 = B)M(t — 1)
& = M@C-d)+ M+ -M-C) - So—Fr (4)
% = C{rl—-M-C)—aM —yM(t —12) — da}

with the initial conditions M(t) = ¢1(t) > 0,C(t) > ¢a(t) > 0,—7 < t < 0, where 7 = max{r,7},P =
(p1,92) € C([—,0], Rio), the Banach space of continuous functions, mapping the interval (—7,0) into Rﬁ_o,

where we define R2, = {(M,C) : M,C > 0}.



System with delay contd.

For 0 <t < min{rm, >}, we have

dM 9(1 — B)pa(t — 1)
— = M®){aC@) - di} + {ab(t) +bH1 - M(t) - C()} - == qbz(tl— )
% = C@)[r {1 - M(t) - C(t)} — aM(t) — vt — 72) — da}

Therefore, for 0 < t < min{7, 7}, ‘ii—ﬂf > 0 implies ¢(t — 1) < [1{1 — ¢p2(t — 71)} and (fi—? > 0 implies

¢1(t—T2) < lg(t), where ll(t) e M(t){aC’(t)—d1}+ag{(l;/.f_(g)—|—b}{1—M(t)—C(t)} and Zg(t) _ T{l—M(t)—C(é)}—aM(t)—dz.

Thus, the system is well posed in —7 < s < 0if 0 < M(s) = ¢1(s) < max{l1(s + 71){1 — ¢2(s)},la(s + ™)}

and 0 < C(s) = ¢o(s).

The characteristic equation of the system (3) at E* is

D()\, 1, TQ) =X+ AN+ B+e?C +e 22D 4 Ee Mntn) = 0, where = —aj] — aaz,

B = anaz — 12021, Cy = —a13, D = asai3 — 14021, E = —Qa12023, F = —Qa14023,

a1 = aC* —dy — (aM* +b) + a(l — M* - C*), 12 = aM* — (aM* + ), a13 = _gl(i_cg)a

a4 = —9855-1];{2—*, azn = —(r + a)C*, ax = r(1 - M* — 2C*) — (@ + v)M* — do and

ao3 = ’}’C*




Systemwitht; >0andz, =0

We now consider the case in which the recovery of algal turf after being grazed by her-
bivores is mediated by some discrete time lag 71 and an instantaneous macroalgal-toxic
liberation. The system (3) reduces to

dM
T
dC
dt

1-B)M(t —n)
1-C(t—m) (4)

= M(C}:C—dl)—l—(aM—l—b)(l—M—C)—g(

|

@, i e oy A

with the initial conditions M (t) = ¢1(t) > 0,C(t) = ¢2(t) > 0,—1, <t < 0 and ¢;(0) > 0
G=1,2).
The characteristic equation of the system (4) at E* is A2+ A; +B—e 2 (Cy+AD;) = 0,

where Ay, = A, Bi=B—-—E,Cy=—-F—D and D; = -C.



Systemwitht; > 0and 7, = 0 (contd.)

Lemma 4.3. Assume that the conditions of Lemma 3.2 are satisfied. If either (i) B < C?

or (it) D} +2B; — A? = 24/B} — C? > 0 holds, a Hopf bifurcation occurs as 11 crosses

2
+ S & L —q[ w+D1(Bl—w_1_)—w+A1C1
T, where 7" = - tan { o e

Lemma 4.4. Assume that the conditions of Lemma 3.2 are satisfied. If D? + 2B, —
A% > 2./B? — C? > 0 holds, then there exists a positive integer k such that there are

k switches from stability to instability and from instability to stability. Therefore, Hopf

2
: : + ok | _1 JwiD1(B1—wi)—wi+A1Ch 3
bifurcation occurs as Ty crosses Ty, where T, = Z-tan { T e B

0 ==l dle P



Systemwitht; =0and 7, > 0

We now consider the case of instantaneous recovery of algal turf after being grazed by
herbivores but a discrete time lag 75 for macroalgal-toxic liberation.

The system (3) reduces to

= ufac-S=B g s @iy -a-o) (7)
% = C{r(1-M =C) — aM +YM(t — 1) — dy}

with the initial conditions M (¢) > 0,C(t) = ¢a(t) > 0,—72 < t < 0 and ¢5(0) > 0.

The characteristic equation of the system (7) at E* is A + XAy + By — Cye 72 = (), where

A2:A+O,BQZB+D andng—(E+F)



Systemwitht; = 0and 7, > 0 (contd.)

Lemma 4.6. Assume that the conditions of Lemma 3.2 are satisfied. If either (i) B3 < C3

or (it) 2By — A2 = 2/B% — C? > 0 holds, a Hopf bifurcation occurs as T, crosses T ,

Lt I by A
where 77 = 5, tan (—Bz—bi)'

Lemma 4.7. Assume that the conditions of Lemma 3.2 are satisfied. If 2By — A3 >
21/ B2 — C2 > 0 holds, then there exists a positive integer r such that there are r switches
from stability to instability and from instability to stability. Therefore, Hopf bifurcation

_1{ beA
occurs as T, crosses T, where T = itan ' (B:—bz‘?) 2l ot o= 5 28 g (R R
T

ﬂ.’ T



Systemwitht; > 0andz, >0

we consider D(A, 7, 72) = 0 in its stable interval and regard 7 as a parameter.
Without any loss of generality, we assume that the conditions of Lemma 3.2 are satisfied
and either (i) B2 < C? or (ii) 2By — A2 = 21/B2 — C? > 0 hold. Then the system (7) is

stable for 7, € [0, 75 ).

Let iw(w > 0) be a root of D(A, 7, 7) = 0. Then D(iw, 1, 72) = 0 gives

—w? + B+ Ecoswry = —(F coswry + D) coswry + (Fsinwm — wC) sinwn and

wA — Esinwry = (F coswty + D) sinwr; + (F sinwty — wC) cos w;.

Squaring and adding these equations we get w* + kjw? + kow + k3 = 0, where
ky=A2_C? 2B —2FE coswmy, ks = 2(CF — AE)sinwr and ks = E>+ B2 — F2_D? +
2(BE — DF) coswTs.

Let G(w) = w* + kiw? + kaw + k3.



Systemwitht; > 0andt, >0  (contd.)

Then if (B + E)? < (D + F)?, then G(0) < 0. Also, lim,,_,. G(w) = oco.

We can obtain that G(w) = 0 has finite positive roots wi,ws, ..., wn. For every fixed
w;, 2= 1,2,...,m, there exists a sequence {'rfz : 7 =1,2,3,...} such that G(w) = 0 holds.
ISC R T oAy =il 2 AN gl = 1 SRS

When 7, = 75, the equation D(A, 71, 72) = 0 has a pair of purely imaginary roots =iw*
for 7, € [0, 75).

We assume that ¢ = [d(dn;f‘)} LN =N

Therefore, by the general Hopf bifurcation theorem for functional differential equations,
we get the following result:

Lemma 4.8. Assume that the conditions of Lemma 3.2 are satisfied. Let { # 0, (B +

E)?2 < (D + F)? and either (i) B2 < C2 or (#4) 2By — A2 = 2./B2 — C2 > 0 hold for all

o € [0,757). Then E* is locally asymptotically stable when 11 € [0, 7)) and the system (3)




Systemwitht; >0and 7, >0 (contd.)
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(a) Forr = 1, other parameter values in Table 1, the system (2) is stable at coral-dominated E™*.

(b) Forr=1, 7; = 1.06, 7,= 0.1, other parameter values as in Table 1, the system (3) undergoes a
Hopf bifurcation as y is increased through y,,- = 0.6.



Systemwitht; > 0and 7, >0 (contd.)
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Forr=1and y= 1.3, the system (2) is stable at macroalgae-dominated E,, whereas, the system
(3) with T, = 1.06, 7, = 0.1, is stable at coral-dominated E*(solid lines).

Forr=1and y= 2.5, the system (2) and the system (3) with 7, = 1.06, 7, = 0.1, both are stable at
macro-dominated E, (dotted lines).



Systemwithty >0and 7, >0  (contd.)
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For r = 1 and 7,= 0.1, other parameter values as in Table 1, the system (3) undergoes a Hopf
bifurcation as 74 is increased through 7,;=1.03.



Observations

« With low macroalgal-toxicity, the system becomes stable at the
coral-dominated regime. Increase of the toxicity level below a
certain threshold determines two possible stable regimes
depending upon the initial conditions. With high macroalgal
toxicity, coral depletes completely and the system becomes
stable at the coral-free equilibrium.

« With high macroalgal-toxicity, increase of grazing rate increases
the resilience of the coral-dominated regime.

« With high macroalgal grazing rate by herbivores, increase of
macroalgal growth rate on algal-turf increases the resilience of
the coral-dominated regime.



Observations (contd)

* The system becomes stable with high growth rate of corals on
turf algae even with high macroalgal-toxicity level, whereas, the
system with delays becomes oscillatory when the macroalgal-
toxicity level crosses a certain threshold.

« With high macroalgal-toxicity, the system becomes macroalgae-
dominated and stable, whereas with the same toxicity (level

below some certain thresho

d) the system with delays becomes

coral-dominated and stable. Thus, by considering the

macroalgal-recovery time

ag and toxin-liberation delay, the

coral-dominated system becomes more tolerant to higher toxicity

level of macroalgae.



Effects of macroalgal toxicity and overfishing
on the resilience of coral reefs

The Previous Model

dM g(1-p) |
i M {a(] LT dy ¢+ (aM + b)T
dC
ar g1 -p5) ,, /
z = M’{ T +dy p +doC+~yYMC —T(aM + rC + b)
where M(0) > 0,C(0) > 0 and 7°(0) > 0.

The dynamics of herbivores is not considered in this model.
Main objective

. To study the dynamics of the system in presence of herbivores in coral
reefs.

. To find the resilience of the system in presence of fast-growing toxic-
macroalgae and overfishing of herbivores.




Resilience

* Resilience iIs the capacity of a system to absorb disturbance
and reorganize while undergoing change so as to still retain
essentially the same function, structure and identity.

Some aspects of Resilience

There are three crucial aspects of resilience.

Latitude (L): the maximum amount of a system can be
changed before losing its ability to recover.

Resistance (R): the ease or difficulty of changing the system.

Precariousness (Pr): how close the current state of the system
IS to a limit or “threshold”.

Brian Walker, C. S. Holling, Stephen R. Carpenter and Ann Kinzig: Resilience, adaptability and transformability in
social—ecological systems. Ecol Soc 9:5 (2004) .




Modifications in the Model

Basic Assumptions:

In absence of harvesting of Parrotfish, the grazing intensity of
Parrotfish arrives at its maximum, g.

The grazing Intensity % of Parrotfish Is proportional to the
abundance of Parrotfish relative to its maximum carrying capacity k.

The loss of macroalgal cover and subsequent recolonization of algal

AN gMPpP
turfs due to grazing is at a rate K(M+T)

Parrotfish are harvested with maximal harvesting rate h.



Modified Model

dM gP

— = M<aC — —d M + b)T

di {O‘ RO+ 1) 1}““ 4

dC

= C{rT — (a+v)M — ds}

drl gP

— = M d doC MC —-T(aM+rC+b
” {k(M—I—T)+ 1}+ 2C + 7 (aM +rC + b)
dP P

B~ Plagi— _h

dt [S{ k(M+T)} ]

where M (0) > 0,C(0) > 0,7(0) > 0 and P(0) > 0.

Bhattacharyya and Pal,
DCDS-B (2017).



Simplification of the model

Since d—“;(ﬂf +C+1T) =0, it follows that M(t) + C(t) + T(t) = cg, for all t > 0, where ¢ = M(0) +

C(0) + T(0).

Without any loss of generality we assume that ¢, = 1. Then the system reduces to

dM p
it M{ac_k(]_g—C)_d1}+<aM+b><1_M—C)Efl
% = C{r1-M-C)—(a+7)M —dy} = f?

R Rt =i SRS

where 0 < M(0) < 1,0 < C(0) < 1 and P(0) > 0.

The right-hand sides of the equations in the system reduced are smooth functions of
the variables M, C,P and the parameters. As long as these quantities are non-
negative, local existence and uniqueness properties hold in the positive octant.




Equilibria and their existence

(z) Coral and Parrotfish-free ethbuumuEg (Mo, 0, 0) where M, = = b— dl"‘\/(a):b d1)?+4bdy

(72) Parrotfish-free equ111b11um'E1 (M,C4,0 )'Where Ci=p+qMi,p=1- —~, q= '"JF—C?W’- and
i ——— |
v (r—d2)a—rdy+ads+b(a+7) +\/{(r ds)a—rdi+ada+b(a+v)}2+4bdz{(a— a)(a+7)+’rac}
S 2{(a—a)(at+7)+ra}
________________________________ :
|
| By exists if (@ —a)(a+7) +ra>0; |
G . NN N SN NN S SN SN N SN SN SN SN S SN SN SN SN N SN SN NN SN S S N S S . I
(722) coral-free equlhbrlum in presence of macroalgae and PQWOtﬁShIEQ = (M,,0, Pg)' where M, =

(#v) interior equilibriumiE™* = (M*, C*, P*), |Where M* is a positive root of the equation Z , @il A AE
0,C* = p1 + @ M* and P* = py + qoM*, where a1 = %(T + a+ v)[(a — a)la+7v) —ra], az =
kaqy (1 —p1) — kqi(apr — di) — gg2 + k(1 + q1) — ak(1 — p1)(1 + 2q1), ag = k(apy — d1)(1 —p1) — gp2 —

bk(1 — p1)(2q1 + 1) + ak(l — p1)%,aq = bk(1 —p1)%,p1 = 1 — L, py = k(s_h)s(l_m),ql = — 2t and

gs = _M i E* exists uniquely if 7 > (o + ) (u) :



Stability analysis at E,

At Ej the eigenvalues of the Jacobian matrix of the system are —\/ (@ —b—dy)?+ 4ab, r—do— My (r+
a + ) and s — h. Therefore, all the eigenvalues of the Jacobian matrix are negative if r +a + v > %2-

and h > s. This gives the following lemma:

Lemma

The system (2) s locally asymptotically stable at Eqy if v > v1 and h > s, where v, = ’"];[‘? — (r+ a).

Therefore, with high macroalgal toxicity and high rate of harvesting of Parrotfish, the system stabilizes

at macroalgae-dominated steady state with complete elimination of coral and Parrotfish.

Transcritical bifurcation at E,

Lemma

Ifa > % {a +b—di + \/(a +b—dy)?+ 4ad1} and h > s, the system undergoes a transcritical

bifurcation at Ey when v crosses 7.




Stability analysis at E,

Lemma
The system is locally asymptotically stable at Eo if v > o and h < s, where o = % — (r+ a).
Therefore, with high macroalgal toxicity and low rate of harvesting of Parrotfish, the system stabilizes

at macroalgae-dominated steady state in presence of Parrotfish with complete elimination of corals.

Transcritical bifurcation at E,

Lemma

2 —b—d1+g(1—2)V? +4ab
If h < s and o # T\/{a (a—l<j)£1]\£ro—1: )} b (r+a), the system undergoes a transcritical bifurcation

at Eo when v crosses .

Persistence at E”

Lemma
The system is persistent at E* if v < min{y1,v2} and h < s.
Therefore, with low macroalgal toxicity level and low rate of harvesting of Parrotfish, all the organisms

in the system coexists.




Stability analysis at E*

The Jacobian J* = J(E*) of the system evaluated at an interior equilibrium E* is

« _ b(1=C") * M*P* M*
—aM* — =55 (@—a)M* —b— e —wi-om
J =1 —@r+a+y)C* —rC* 0
0 __sP? __sP*
k(1—C~)2 k1-C7)

The characteristic equation of the Jacobian J* of the system is A3 4+ A10% 4 Ay + A3 = 0, where

Al =rC* + aM* + b(l]\—%*c*) + k(lg_P(;*)Z’

- - ¥ b _C* = - * X * * * *
4o = B + {amr + G rom 4 2B S Lt (r+a+ ) {(a - a)MrCT —bom - REGEL
)C* P M
Ag = TP (o — a)M* — b},

The system is locally asymptotically stable at E* if A1Ay > As.

Ata = at b = a* (say), we have Ay(a”) = RO )+{aM* + el {'rC’* ol e e

Therefore, at o = a* if As(a™) > 0, then the Jacobian J* of the system (2) has a simple zero eigenvalue.

Let V* and W* are the eigenvectors corresponding to the zero eigenvalue for J* and J*T respectively.

T i
. (6 o)) %
Then we obtain V* = _—r__ 1| _p* and W*=( 1 _eM '+~ _gM ,
r+oa*+y C*(r+a*+v) sP*
Due to the complexity in the algebraic expressions involved, we will use numerical simulations to ver-

ify that W*T f(E*;a*) # 0 and W*T[D2f(E*;a*)(V*,V*)] # 0. In this case the system undergoes a

saddle-node bifurcation at E* when « crosses ™.




Numerical Simulations

Table 1: Parameter values used in the numerical analysis.

Parameters Description of Parameters Value | Reference
o Rate of macroalgal direct overgrowth over coral 0.1 [27]
r Recruitment rate of corals on turf algae 0.55 [27]
a Rate of macroalgal vegetative spread over algal turfs 0.77 [27]
b Colonization rate of newly immigrated macroalgae on algal turf | 0.005 [27]
dq Natural mortality rate of macroalgae 0.1 [24]
do Natural mortality rate of corals 0.24 [27]
¥ Toxin-induced death rate of corals 0.1 -
s Intrinsic growth rate of Parrotfish 0.49 [27]
k Maximal carrying capacity of Parrotfish 1 [27]
g Maximal macroalgae-grazing rate of Parrotfish 0.5 [27]
h Harvesting rate of Parrotfish 0.05 -




Bifurcation diagram of y vs. the equilibrium value of coral cover
(with h < s)
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Hysteresis will result in with low toxicity level followed by an increase in the macroalgal
toxicity above a critical threshold y*



Transcritical bifurcation at E, when y crosses y-,

At v = 9, we have Fy = (0.389,0,0.898) and

—0.4281 —0.4853 —0.1945

0 —0.3951 —0.44

i 7
has a simple zero eigenvalue. Also, we obtain V5 = ( —0.7957 1 —0.8980 ) , W = ( 01 0 ) .
Wi £, (Ez;v2) = 0, WL [Dfy(Ey;v2)V2] = —0.389 < 0 and W [D?f(E2;y2)(Va, V2)] = 0.0565 > 0,

satisfying the conditions of transcritical bifurcatigp at Es when v crosses 7s.
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Saddle-node bifurcation at E* when y crosses y*

2nd and 3rd eigenvalues

At v = ~*, we have E* = (0.326,0.0891, 0.818) and

—0.3907 —0.4291 —0.179
J*=1 _0.0713 —0.049 0

0 —0.3951 —-0.44

7
with eigenvalues 0, —0.5469 and —0.3328. Also, we obtain V* = ( 0.8769 0.1256 0.4641 ) , W* =

T
(0.4742 —0.3852 0.7917) , W (E*;v*) = 0.0112 > 0 and W*T[D2f(E*;~v*)(V*,V*)] <0

1st eigenvalue
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Change of Resilience at E* due to the increase of y

Components of Resilience
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The resilience of the
system at the interior
equilibrium is maximum
when macroalgal-toxicity
level is less than y, and
decreases in the bistable
region Il due to the
increase of macroalgal
toxicity. The resilience
becomes zero  when
macroalgal-toxicity level
IS increased beyond y*.



Change of Resilience at E™ due to change in y and h
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With y and h as active

parameters, the
resilience  of the
system becomes
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of  harvesting  of
Parrotfish is greater
than h = 0.0863
where the saddle-node
curve  meets  the
parameter axis at,
y = 0.082 generating
a cusp point (CP) at
their point of
intersection.

The decrease in the rate of harvesting of Parrotfish increases the latitude component of resilience due to the increase of coral
cover. Also, the resistance component of resilience of coral-dominated regime is increased even with the increase of
macroalgal toxicity, measured by taking the difference of the values of at the saddle-node bifurcating point (LP) and at
transcritical bifurcating point (BP) for a particular value of h.



Codim?2 bifurcation with y and h as active parameters
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A two-parameter bifurcation diagram with y and h as active parameters, representing a
cusp point (CP) at (y, h) = (0.082, 0.0863) on the saddle-node curve.



Transcritical bifurcation at E,when y crosses y;

At v = 71, we have Ey = (0.4609,0,0) and

has a simple zero eigenvalue. Also, we obtain V;

0

0

{—0.144 —0.0394 —0.2304\

0

0

0

—0.01 )

T
( 02737 1 0) , W1

(310"

Wi f,(Eo;v1) = 0, WE[Df,(Eo;v1)Vi] = —0.4609 < 0 and W{[D2f(Eo;v1)(V1,V1)] = —0.7319 < 0,

satisfying the conditions of transcritical bifurcation at Ey when v crosses 7.




Bifurcation diagram of h vs. the equilibrium value of coral cover
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Hysteresis will result in with low harvesting rate followed by an increase in the harvesting rate
above a critical threshold h*



Change of Resilience at E™ due to the increase of h
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Bifurcation diagram of g vs. the equilibrium value of coral cover
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Hysteresis will result in with low grazing rate followed by an increase in the grazing rate above
a critical threshold g*



Change of Resilience at E* due to the increase of g
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Change of Resilience at E™ due to change in g and y
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With g and y as active
parameters, the resilience
of the system becomes
maximum  when the
macroalgal toxicity is
less than the threshold
value y= 0.082 where

_the saddle-node curve

meets the parameter axis
at g = 0.4588, generating
a cusp point (CP) at the
point of intersection.

The increase of macroalgal toxicity decreases the latitude component of resilience of coral-dominated regime due to the
decrease of coral cover. Also, the resistance component of resilience of coral-dominated regime is decreased even with high
grazing rate of Parrotfish, measured by taking the difference of the values of g at the saddle-node bifurcating point (LP) and

at transcritical bifurcating point (BP) for a particular value of y.



Codim?2 bifurcation with g and y as active parameters
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A two-parameter bifurcation diagram with g and y as active parameters, representing a
cusp point (CP) at (g, y) = (0.4588, 0.082) on the saddle-node curve.



Bifurcation diagram of b vs. the equilibrium value of coral cover
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Hysteresis will result in with low colonization rate followed by an increase in the colonization
rate above a critical threshold b*



Change of Resilience at E™ due to the increase of b
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Change of Resilience at E* due to change in b and y
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The decrease of macroalgal toxicity increases the resilience of coral-dominated regime even with the increase in
colonization rate of macroalgae, measured by taking the dierence of the values of b at the saddle-node bifurcating point (LP)
and at transcritical bifurcating point (BP) for a particular value of y.



Codim?2 bifurcation with b and y as active parameters
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A two-parameter bifurcation diagram with b and y as active parameters, representing the
cusp point at (b, y ) = (0.0613, 0.1165) on the saddle-node curve.



Observations

> Resilience of the coexistence state decreases due to

the increase of macroalgal toxicity.

the increase of the rate of harvesting of herbivores.

the increase of macroalgal external immigration rate.

the decrease of grazing intensity of herbivores.



Observations i)

» There Is a gradual decrease in the toxicity-tolerance
level of the stable coexistence state with a steady
Increase In harvesting rate of herbivores.

» A sharp decrease In the toxicity-tolerance level of the
stable coexistence state occurs even with
* slight decrease of herbivore-grazing intensity.

 slight iIncrease of Immigration rate of toxic-
macroalgae.
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